Graphics & Illustrations

Showing 61 to 0 of 0
  • 1
Previous  Next
<<
>>
Localize site content
  • Contact Us
  • Jobs Board
  • Intranet
  • Visual Identity Guide
  • Privacy Policy

The U.S. National Science Foundation (NSF) and the U.S. Department of Energy (DOE) Office of Science will support Rubin Observatory in its operations phase to carry out the Legacy Survey of Space and Time. They will also provide support for scientific research with the data. During operations, NSF funding is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF, and DOE funding is managed by SLAC National Accelerator Laboratory (SLAC), under contract by DOE. Rubin Observatory is operated by NSF NOIRLab and SLAC.

NSF is an independent federal agency created by Congress in 1950 to promote the progress of science. NSF supports basic research and people to create knowledge that transforms the future.

The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Funding agency logos
Homepage
    • About
    • History
    • Who was Vera Rubin?
      • Rubin in Chile
      • Cerro Pachón
      • Observatory Site Selection
      • Organization
      • Leadership
      • Science Collaborations
      • Departments and Teams
    • Funding Information
      • Work With Us
      • Jobs Board
    • Explore
    • Rubin Basics
      • How Rubin Works
      • Legacy Survey of Space and Time (LSST)
      • Rubin Technology
      • Alert Stream
      • Rubin Numbers
    • Science Goals
      • Skyviewer ↗
      • Skysynth: The cosmos captured by Rubin, for your ears
    • Orbitviewer ↗
    • Rubin Voices
    • Get Involved in Rubin Research
      • Activities, Games, and More
      • Space Surveyors Game
      • Animated Video Series
      • Rubin's 3200-Megapixel Group Photo
    • Gallery
      • Main Gallery
      • Featured Media
      • First Look
      • Graphics & Illustrations
      • Outreach & Education
    • Slideshows
    • Construction Archive Gallery
    • Media Use Policy
    • News
    • Press Releases
      • Rubin Observatory First Look
      • The Cosmic Treasure Chest
      • A Swarm of New Asteroids
      • Rhythms in the Stars
      • Trifid and Lagoon Nebulae
      • Rubin First Look Watch Parties
    • Media Resources
    • Press Releases
    • Name Guidelines
    • For Scientists
    • Get started
      • News, events, and deadlines
      • Rubin Science Assemblies
      • Rubin Data Academy
      • Rubin Community Workshop
      • Resources for scientists
      • Rubin Community Forum
      • Early Science Program
      • Workshops and seminars
      • Tutorials
      • LSST Discovery Alliance
      • Public outreach materials
      • For amateur astronomers
      • Survey, instruments, and telescopes
      • Key numbers
      • The Legacy Survey of Space and Time (LSST)
      • Instruments
      • Telescopes
      • Data products, pipelines, and services
      • Data Policy
      • Data access and analysis
      • Recent data releases
      • Alerts and brokers
      • Data processing pipelines
      • User-contributed resources
      • Future data products
      • Simulation software
      • Documentation and publications
      • Technical documentation
      • How to cite Rubin Observatory
      • Publication policies
      • Glossary & Acronyms
      • Papers citing Rubin Observatory
      • Science Collaborations
      • Galaxies Science Collaboration
      • Stars, Milky Way, and Local Volume Science Collaboration
      • Solar System Science Collaboration
      • Dark Energy Science Collaboration
      • Active Galactic Nuclei Science Collaboration
      • Transients and Variable Stars Science Collaboration
      • Strong Lensing Science Collaboration
      • Informatics and Statistics Science Collaboration
    • Citizen Science
      • Committees and teams
      • Science Advisory Committee (SAC)
      • Survey Cadence Optimization Committee (SCOC)
      • Users Committee
      • Target of Opportunity (ToO) Advisory Board
      • Resource Allocation Committee (RAC)
      • Community Science Team (CST)
      • Research Inclusion Working Group (RIWG)
      • Project Science Team (PST)
      • In Kind Program
      • Resources
      • In-Kind Program FAQs
      • Frequently Asked Questions
      • How to navigate this website
      • Code of Conduct
      • Interim CoC
    • Education
    • First Look Resources for Lasting Impact
    • Education FAQs
    • Educators
    • Glossary
    • Investigations
    • Calendar
Localize site content

Let's Connect

Galleries
  • Main Gallery
  • Featured Media
  • First Look
  • Graphics & Illustrations
  • Outreach & Education
  • Visit the Rubin Observatory on Facebook
  • Visit the Rubin Observatory on Instagram
  • Visit the Rubin Observatory on LinkedIn
  • Visit the Rubin Observatory on Twitter
  • Visit the Rubin Observatory on YouTube
    • Rendering of the LSST Camera
    • 20240918 Rubin Observatory construction history and timeline - ENG.jpg
    • Summit LabeledArtboard 1.png
    • Rubin Science Areas Representation
    • Illustration of the Deep Night Sky
    • LSST Camera - LSST_filter_switch_loop_0.gif
    • LSST Camera - media2.gif
    • LSST Camera - media1.gif
    • LSST Camera - Camera_Layout-full.jpg
    • Conceptual illustration of a multi-messenger astrophysical event. In the top left, two neutron stars are colliding in a bright blue burst of energy. The collision emits several different types of signals, which are being detected by different telescopes and facilities illustrated on Earth in the lower right. Gravitational waves are represented by bright and dark bands spiraling outward from the colliding neutron stars. Subatomic particles called neutrinos radiate from the collision as dashed lines, and light radiates as squiggly lines. A meandering, looping solid line that comes from somewhere else beyond the collision represents a cosmic ray, which expands into a fan-shaped spray at the Earth’s atmosphere.
      Artist’s Illustration of Multi-Messenger Event
    • Illustrated image showing a young Vera Rubin looking through a telescope, the Vera C. Rubin Observatory in the background, and surrounded by dark matter and stars. The image has an almost stained glass appearance with different segments of the image in different colors of the rainbow.
      Illustration of Vera Rubin and Rubin Observatory
    • 20240612 Alerts Callout.png
    • LSST callout.png
    • Stellar Safari icon.png
    • Scientists Mailing list.png
    • Light rays reflect from 3 mirrors in succession before passing through 3 consecutive lenses and into the camera.
      Path of light through Rubin mirrors
    • Light rays reflect from 3 mirrors in succession before passing through 3 consecutive lenses and into the camera.
      Path of light through Rubin mirrors
    • Rubin Observatory Icon
    • Rubin Observatory illustration.png
    • An artist’s impression of streams of stars around a galaxy. The galaxy occupies most of the image as a fuzzy blue-white oval with spiral features extending out clockwise. The light clouds are interspersed with small dark brown splotches in the same spiral pattern around the center, representing dust clouds. The galaxy’s center is a bright yellow glow. Overlaid on top of and surrounding the galaxy are several criss-crossing, faint tendrils of stars that represent satellite dwarf galaxies and star clusters that have been stretched out into long thin lines. The tendrils have various lengths and widths, though all are arcs rather than complete circles. The background is black.
      Artist’s Impression: Stellar streams in and around the Milky Way
    • How Rubin Observatory covers the sky
    • How Rubin Observatory covers the sky
    • An illustration of the path that light from distant galaxies might take through the cosmic web. The background is a dark blue with criss-crossing light blue filaments made of tiny dots, resembling wisps of smoke or strings of a cobweb. Three bright teal squiggly lines spider out toward the right from three small illustrated galaxies slightly left of center, representing a squiggly path that light might take. The squiggly lines end at a pair of illustrated galaxies, one teal and one white. The teal version shows the true shape and position of the galaxy as it would have been seen without weak gravitational lensing effects. The white version represents the galaxy’s observed shape and position, slightly elongated and offset compared to the teal.
      The effects of the Universe's large-scale structure on the light from distant galaxies
    • An illustration of galaxies scattered across the cosmic web. The background is a dark blue with criss-crossing light blue filaments made of tiny dots, resembling wisps of smoke or strings of a cobweb. There are about 15 galaxies scattered around the image. Each galaxy is actually a pair of illustrations offset from each other, showing two different shapes and positions for the same galaxy. The teal version of the galaxy is generally a circular or oval shape, representing its true shape and position before its light has traveled through the Universe. The white version of the galaxy is offset slightly in a direction and elongated or distorted compared to the teal.
      The effects of weak gravitational lensing by the Universe's large-scale structure
    • An illustrated video demonstrating the weak gravitational lensing effects of the Universe's large scale structure that distort the observed shapes and positions of distant galaxies. The video begins with a single white illustrated galaxy in the center as an elongated oval shape, representing the observation of a distant galaxy. The background is a dark blue with criss-crossing light blue filaments made of tiny dots, resembling wisps of smoke or strings of a cobweb. The camera perspective rotates to the left, conveying a sense of 3D. The web-like background fades, and another smaller illustrated galaxy shape appears to the left, representing the origin of the distant galaxy's light. This distant galaxy wobbles and wiggles toward the final observed galaxy on the right, representing how light from that galaxy traveled through space and ending at that single white galaxy from the beginning of the video. The camera rotates back to the original perspective, and a circular teal version of the observed galaxy appears offset from the oval white version, representing the true shape and position of the galaxy if its light had not been bent by weak gravitational lensing. Finally, a dozen additional white and teal galaxy pairs appear all around the image. The white version of each galaxy is offset slightly and elongated or distorted compared to the teal version.
      The effects of weak gravitational lensing by the Universe's large-scale structure on the observed shapes and positions of galaxies.
    • 20230802 Boom! Using Supernovae to Map our Expanding Universe (0;02;07;12).jpg
    • 20230802 Boom! Using Supernovae to Map our Expanding Universe (0;00;07;12).jpg
    • 20230802 Boom! Using Supernovae to Map our Expanding Universe (0;00;20;12).jpg
    • 20230802 Boom! Using Supernovae to Map our Expanding Universe (0;02;02;02).jpg
    • Interstellar object rapidly approaching our Solar System
    Showing 61 to 90 of 224
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    Previous  Next
    <<
    >>